
Journal of Modern Applied Statistical
Methods

Volume 15 | Issue 2 Article 45

11-1-2016

An Alternative Algorithm and R Programming
Implementation for Least Absolute Deviation
Estimator of the Linear Regression Models
Suraju Olaniyi Ogundele
Federal University of Petroleum Resources, Effurun, Delta State, Nigeria., ogundele.olaniyi@fupre.edu.ng

J. I. Mbegbu
Department of Mathematics, University of Benin, Benin-City, Edo State, Nigeria.

C. R. Nwosu
Department of Statistics, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been
accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ogundele, Suraju Olaniyi; Mbegbu, J. I.; and Nwosu, C. R. (2016) "An Alternative Algorithm and R Programming Implementation for
Least Absolute Deviation Estimator of the Linear Regression Models," Journal of Modern Applied Statistical Methods: Vol. 15: Iss. 2,
Article 45.
DOI: 10.22237/jmasm/1478004180
Available at: http://digitalcommons.wayne.edu/jmasm/vol15/iss2/45

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss2/45?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss2/45?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages


An Alternative Algorithm and R Programming Implementation for Least
Absolute Deviation Estimator of the Linear Regression Models

Cover Page Footnote
*Correspondent Author E-mail/Phone Number: ogundele.olaniyi@fupre.edu.ng, +2348055678505.

This algorithms and code is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/
vol15/iss2/45

http://digitalcommons.wayne.edu/jmasm/vol15/iss2/45?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss2/45?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss2%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

November 2016, Vol. 15, No. 2, 755-767. 

doi: 10.22237/jmasm/1478004180 

Copyright © 2016 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Mr. Ogundele is an Assistant Lecturer in the Department of Mathematics / Computer 

Science. Email him at: ogundele.olaniyi@fupre.edu.ng. J. I. Mbegbu is a Professor in the 

Department of Mathematics. C. R. Nwosu is an Associate Professor in the Department of 

Statistics. 

 

 

755 

An Alternative Algorithm and R 
Programming Implementation for Least 
Absolute Deviation Estimator of the Linear 
Regression Models 

Suraju Olaniyi Ogundele 
Federal University of Petroleum Resources 

Effurun, Nigeria. 

J. I. Mbegbu 
University of Benin 

Benin-City, Nigeria 

C. R. Nwosu 
Nnamdi Azikiwe University 

Awka, Nigeria

 

 
We propose a least absolute deviation estimation method that produced a least absolute 

deviation estimator of parameter of the linear regression model. The method is as 

accurate as existing method. 

 

Keywords: Linear regression model, least absolute deviation (LAD), equation of a 

line, R statistical programming and algorithm 

 

Introduction 

Regression is a statistical methodology that is use to relate a variable of interest, 

which is called the dependent variable or response variable, to one or more 

predictors (independent/regressors) variables. The objective of regression analysis 

is to build a regression model or prediction equation that helps us to describe, 

predict and control the dependent variable on the basis of the independent 

variable(s). When we predict the dependent variable for a particular set of values 

of the independent variables, we wish to place a bound on the error of prediction. 

The goal is to build a regression model that produces an error bound that will be 

small enough to meet our needs. 

In the simple linear regression model, the Population Regression Function 

(PRF) is given by: 

 

 0 1   y x       (1) 

http://dx.doi.org/10.22237/jmasm/1478004180
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In this model there is only one factor x to explain y. All the other factors that 

affect y are jointly captured by the error term denoted by ε. We typically refer to y 

as the endogenous or dependent variable and x as the exogenous or independent 

variable. 

The idea of the regression model is to estimate the population parameters, β0 

and β1 from a given sample. The Sample Regression Function (SRF) is the sample 

counterpart of the population regression function (PRF). Since the SRF is 

obtained for a given sample, a new sample will generate different estimates. The 

SRF, which is an estimation of the PRF is given by: 

 

 0 1
ˆ ˆˆ  i iy x     (2) 

 

Equation (2) is used to calculate the fitted value  ˆ
iy  for y when x = xi. In the 

SRF 0̂  and 1̂  are estimators of the parameters β0 and β1. For each xi we have an 

observed value (yi) and a fitted value  ˆ
iy . The difference between yi and ˆ

iy  is 

called the residual î  given by: 

 

   ˆ ˆ
i i iy y     (3) 

 

The ordinary least squares (OLS) method is the most widely used method of 

parameter estimation. The OLS criteria is to minimize the sum of squared error of 

prediction 

 

  
22ˆ   ˆ

i i iy y     (4) 

 

OLS regression yields estimates for the parameters that have the desirable 

property of being minimum variance unbiased estimators (Chatterjee & Hadi, 

2006). 

Ordinary least squares estimation places certain restrictive assumptions on 

the random component in the model, the errors of prediction. OLS estimation 

assumes, among others, that the errors of prediction are normally distributed, with 

a common error variance at all levels of X [ε ~ N (0, σ2)]. The normality 

assumption is frequently untenable in practice. Violation of this assumption is 

often manifested by the presence of outliers in the observed data (Nevitt & Tam, 

1998). Thus data containing outlying values may reflect non-normal error 

distributions with heavy tails or normal error distributions containing observations 
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atypical of the usual normal distribution with larger variance than the assumed σ2. 

It is well demonstrated that outliers in the sample data heavily influence estimates 

using OLS regression, sometimes even in the presence of one outlier (Rousseeuw 

& Leroy, 1987). 

If the assumption that the uncertainties (i.e., errors) in the data are 

uncorrelated and normally distributed are valid for the data at hand, then for most 

quantitative experiments, the method of least squares is the "best" analytical 

technique for extracting information from a set of data. The method is best in the 

sense that the parameters determined by the least squares analysis are normally 

distributed about the true parameters with the least possible standard deviations 

(Wolberg, 2006).  

However, the assumption of the general applicability of the normal law of 

errors has been under attack from the very beginning of the development of linear 

regression and, in particular, the least squares analysis hinges critically on the 

existence of the second moment of the error distribution. Thus, if it must assumed 

the error distribution follows, for instance, a Cauchy distribution or any long-

tailed distribution having no finite second moment, then the elegant arguments 

made in favour of the least squares regression estimators become invalid, and thus, 

it may become mandatory to look for other criteria to find best estimators for the 

linear regression model (Giloni & Padberg, 2002). For situations in which the 

underlying assumptions of OLS estimation are not tenable, the choice of method 

for parameter estimation is not clearly defined. Thus, the choice of estimation 

method under non-ideal conditions has been a long-standing problem for 

methodological researchers (Nevitt & Tam, 1998). The history of this problem is 

lengthy with many alternative estimation methods having been proposed and 

investigated (Birkes & Dodge, 1993). 

Robust estimation refers to the ability of a procedure to produce highly 

insensitive estimates to model misspecifications. Hence, robust estimates should 

be good under wide range of possible data generating distributions. In the 

regression context, under normality with identically and independently distributed 

errors, the least squares is the most efficient among the unbiased estimation 

methods. However, when the normality assumption not feasible, it is frequently 

possible to find estimation methods that are more efficient than the traditionaI 

least squares. This occurs when the data generating process has fat tails resulting 

to several outliers compared to the normal distribution. In these cases the least 

squares becomes highly unstable and sample dependent because of the quadratic 

weighting, which makes the procedure very sensitive to outlying observations 

(Pynnonen & Salmi, 1994). Examples of this type of robust estimation are Huber 
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M-estimation, the method of Least Median of Squares, and the method of Least 

Absolute Deviations (LAD). 

The robust LAD estimator is investigated in the present study and so we 

provide a brief description of the method. LAD was developed by Roger Joseph 

Boscovich in 1757, nearly 50 years before OLS estimation (see Birkes & Dodge, 

1993 for a review and historical citations). In contrast to OLS estimation which 

defines the loss function on the residuals as Σei
2, LAD finds the slope and Y 

intercept that minimize the sum of the absolute values of the residuals, Σ | ei |.  

Although the concept of LAD is not more diffucult than the concept of the 

OLS estimation but due to computational difficulties in obtaining LAD estimates 

and lack of exact sampling theory based on such estimates, the LAD method lay 

in the background and the LS method became popular (Rao & Toutenburg, 1999). 

Since there are no exact formulas for LAD estimates, an algorithm is used to 

iteratively obtain the estimate of the parameters.  

Methodology 

Propose Method 

Using the LAD criterion, the model 0 1
ˆ ˆˆ

i iy x    should be constructed by two 

pairs of data points that yield the minimum sum of absolute deviation, our 

approach is to investigate the sum of absolute deviation generated by all possible 

different combinations of data points and then select the two data points that 

produced the least absolute deviation to find the least absolute deviation estimator. 

The two points (xi, yi) and (xj, yj) yield the following system of equations: 

 

 
0 1

0 1

ˆ ˆ 

   ˆ ˆ

i i

j j

y x

y x

 

 

 

 
  (5) 

 

The solution of equation (5) yield the value of 0̂  and 1̂ , for the selected 

pair of data. Subtituting the value of 1̂  and 0̂  obtained from (5) into (1), we 

have 

 

 0 1  ˆ ˆˆ
i iy x     (6) 
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(6) is then used to determine the sum of absolute deviation of all other data points 

from the line joining (xi, yi) and (xj, yj) by substituting for xi (i = 1, 2,…, n) of all 

data points and calculating 

 

 
1

ˆ .
n

i i

i

y y


   (7) 

 

This procedure will be repeated for all other combinations of data points and 

the two data points that yielded the least absolute deviation determine the least 

absolute deviation estimator. 

The presence of personal computers make it possible to evaluate repeated 

process using any programming language of choice. The R program is employed 

for all calculations, and the program yields the least absolute deviation estimate 

for the data. 

 

Algorithm for Simple Linear Regression 

 

INPUT: Observations of x and y as vectors X and Y. 

OUTPUT: Slope and intercept.  

 

Step 1. Set i = 1 and j = 2 

Step 2. While i ≤ (n – 1); j ≤ n; i ≠ j, do steps 3 to 4 

Step 3. Select the pairs (xi, yi) and (xj, yj) from the data and calculate 

the values of 1̂  and 0̂  from the system of equations given 

by (5). 

Step 4. For i = 1 to n, determine the estimated value of  ˆy y  by 

substituting for (xi, yi) in (6) and calculate 

 

  
1

  , ˆ
n

i i

i

AbsDev i j y y


    

 

Step 5. Determine the minimum value among all AbsDev (i, j) and 

select the two data points that produced the minimum value. 

Step 6. Print out the values of 1̂  and 0̂  that correspond to the two 

selected data points. 

Step 7. If i > (n – 1) and j > n, then OUTPUT; stop. 
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Step 8. Set i = i + 1; j + 1 and go to step 2. 

Step 9. OUTPUT “Method failed after i > (n – 1) and j > n". 

 

This algorithm is improved upon for multiple linear regression and can be 

scaled to accommodate the numbers of independent variables present in the data. 

We provide the algorithm and the R program for the simplest form of the multiple 

regression with two independent variables 

 

Algorithm for Multiple Linear Regression 

 

INPUT: Observations of x1, x2 and y as vectors X1, X2 and Y. 

OUTPUT: Intercept, first parameter and second parameter.  

 

Step 1. Set i = 1, j = 2 and k = 3 

Step 2. While i ≤ (n – 2); j ≤ (n – 1); k ≤ n; i ≠ j ≠ k, do steps 3 to 4 

Step 3. Select the pairs (xi, yi), (xj, yj) and (xk, yk) from the data and 

calculate the values of 2̂ , 1̂  and 0̂  from the system of 

equations 

 

 

0 1 1 2 2

0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

 

ˆ

 

ˆ ˆ 

i i i

j j j

k k k

y x x

y x x

y x x

  

  

  

  

  

  

  (8) 

 

Step 4. For i = 1 to n, determine the estimated value of  ˆy y  by 

substituting for (x1i, x2i, yi) in  

 

 0 1 1 2 2
ˆ ˆˆ  ˆ

i i iy x x       (9) 

 

 and calculate 

 

  
1

  , , ˆ
n

i i

i

AbsDev i j k y y


    

 

Step 5. Determine the minimum value among all AbsDev (i, j, k) and 

select the three data points that produced the minimum value. 
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Step 6. Print out the values of 2̂ , 1̂  and 0̂  that correspond to the 

three selected data points. 

Step 7. If i > (n – 2), j > (n – 1) and k > n, then OUTPUT; stop. 

Step 8. Set i = i + 1; j = j + 1; k = k + 1 and go to step 2. 

Step 9. OUTPUT “Method failed after i ≤ (n – 2), j ≤ (n – 1) and 

k ≤ n". 
 

Results 

The R program designed by applying this algorithm is presented in the Appendix. 

Application of the R program written for the algorithm to the data in Table 1 

yielded the same results with the iterative method by Birkes and Dodge (1993). 

The best two data points are given to be at (x5, y5) and (x14, y14). The least absolute 

deviation estimate of the model parameters are 

 

 
 0

46.3 4 4.ˆ 8 4
LAD

    

 

 
 1

ˆ 0.53778
LAD

     

 

Then, the LAD regression line is 

 

 46.38444 0.5377ˆ 8i iy x    

 
 
Table 1. Birth Rate Data 
 

Country Birth Rate (yi) Urban Percentage (xi) 
Canada 16.2 55 

Costa Rica 30.5 27.3 
Cuba 16.9 33.3 

Dominican Republic 33.1 37.1 
El Salvador 40.2 11.5 
Guatemala 38.4 14.2 

Haiti 41.3 13.9 
Honduras 43.9 19 

Jamaica 28.3 33.1 
Mexico 33.9 43.2 

Nicaragua 44.2 28.5 
Panama 28 37.7 

Trinidad-Tobago 24.6 6.8 
United States 16 56.5 
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The R program written for the multiple regression implementation of the 

proposed method was applied to find the least absolute deviation estimate of the 

parameter of subset of the supervisor data (Chatterjee & Hadi, 2006) which 

includes Y, X1 and X2. The data is presented in Table 2. The best three data points 

are given to be at (x8, y8), (x9, y9) and (x21, y21). 

The program gives the least absolute deviation estimate of the parameters as 

 

 
 0

28.3 87ˆ 34
LAD

    

 

 
 1

0.68 5 37ˆ 3 6
LAD

    

 

 
 2

0.ˆ 172043
LAD

     

 
 
Table 2. Subset of Supervisor Data 
 

Y X1 X2 
43 51 30 
63 64 51 
71 70 68 
61 63 45 
81 78 56 
43 55 49 
58 67 42 
71 75 50 
72 82 72 
67 61 45 
64 53 53 
67 60 47 
69 62 57 
68 83 83 
77 77 54 
81 90 50 
74 85 64 
65 60 65 
65 70 46 
50 58 68 
50 40 33 
64 61 52 
53 66 52 
40 37 42 
63 54 42 
66 77 66 
78 75 58 
48 57 44 
85 85 71 
82 82 39 
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Conclusion 

The proposed method produced a least absolute deviation estimate that is the 

same as the one provided by the iterative method by Birkes and Dodge (1993) and 

other existing methods 
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Appendix 

# Simple Linear Regression 

# Least Absolute Deviation Estimator (LAD) 

Y<-c(16.2,30.5,16.9,33.1,40.2,38.4,41.3,43.9,28.3,33.9,44.2,28,24.6,16) 

X<-c(55,27.3,33.3,37.1,11.5,14.2,13.9,19,33.1,43.2,28.5,37.7,6.8,56.5) 

p<-1 

n<-length(Y) 

Const<-rep(1,(p+1)) 

l<-0;AbsError<-0;EstError<-0;VecLAD<-c();Vecj<-c();Veck<-c();Vecx<-c();Vecy<-

c();VecB0<-c();VecB1<-c() 

TrialModel1<-function(Xi,Yi,B0,B1){(abs(Yi-(B0+(B1*Xi))))} 

LAD1<-function(n,X,Y,B0,B1){   

 for (i in 1:n){Xi<-X[i];Yi<-Y[i] 

  EstError<-TrialModel1(Xi,Yi,B0,B1) 

  AbsError<-AbsError+EstError 

 } 

 EstLAD<-AbsError 

} 

Kstart<-2 

for (j in 1:(n-1)){xj<-X[j];yj<-Y[j];    

 for (k in Kstart:n){xk<-X[k];yk<-Y[k]  

  if(k==n){Kstart<-Kstart+1}   

  Vecx<-c(xj,xk) 

  Vecy<-c(yj,yk) 

  A<-cbind(Const,Vecx) 

  Det<-round(det(A),4) 

  if(Det!=0){ 

   Beta<-solve(A,Vecy) 

   B0<-Beta[1] 

   B1<-Beta[2] 

   LADEst<-LAD1(n,X,Y,B0,B1)  

   l<-l+1 

   VecLAD[l]<-c(LADEst) 

   Vecj[l]<-c(j) 

   Veck[l]<-c(k) 

   VecB0[l]<-c(B0)   

   VecB1[l]<-c(B1) 
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  }   

 } 

} 

LADLoc<-sort.int(VecLAD,index.return=TRUE) 

PairLoc<-LADLoc$ix[1] 

Pair1<-Vecj[PairLoc] 

Pair2<-Veck[PairLoc] 

Intercept<-round(VecB0[PairLoc],5) 

Slope<-round(VecB1[PairLoc],5) 

Label1<-"Best two data points for LAD estimate are";Label2<-"and" 

Label3<-"The intercept of the LAD regression is" 

Label4<-"The slope of LAD regression is" 

Label1;Pair1;Label2;Pair2;Label3;Intercept;Label4;Slope 

 

 

# Multiple Linear Regression 

# Least Absolute Deviation Estimator (LAD) 

Y<-

c(43,63,71,61,81,43,58,71,72,67,64,67,69,68,77,81,74,65,65,50,50,64,53,40,63,66,

78,48, 

85,82) 

X1<-

c(51,64,70,63,78,55,67,75,82,61,53,60,62,83,77,90,85,60,70,58,40,61,66,37,54,77,

75,57, 

85,82) 

X2<-

c(30,51,68,45,56,49,42,50,72,45,53,47,57,83,54,50,64,65,46,68,33,52,52,42,42,66,

58,44, 

71,39) 

p<-2 

n<-length(Y) 

Const<-rep(1,(p+1)) 

l<-0;AbsError<-0;EstError<-0;VecLAD<-c();VecB0<-c();VecB1<-c();VecB2<-

c();Vecx1<-c();Vecx2<-c();Vecy<-c();Vecj<-c() 

Veck<-c();Vecv<-c() 

TrialModel2<-function(Yi,X1i,X2i,B0,B1,B2){(abs(Yi-(B0+(B1*X1i)+(B2*X2i))))} 

LAD2<-function(n,Yi,X1i,X2i,B0,B1,B2){   

 for (i in 1:n){X1i<-X1[i];X2i<-X2[i];Yi<-Y[i] 
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  EstError<-TrialModel2(Yi,X1i,X2i,B0,B1,B2) 

  AbsError<-AbsError+EstError 

 } 

 EstLAD<-AbsError 

} 

Kstart<-1;Vstart<-2;EndCount<-3 

for (j in 1:(n-2)){x1j<-X1[j];x2j<-X2[j];yj<-Y[j]; 

 Kstart<-Kstart+1      

 for (k in Kstart:(n-1)){x1k<-X1[k];x2k<-X2[k];yk<-Y[k] 

  if(Vstart<n){ 

   Vstart<-Vstart+1   

  }else{ 

   EndCount<-(EndCount+1) 

   Vstart<-EndCount 

  } 

   for (v in Vstart:n){x1v<-X1[v];x2v<-X2[v];yv<-Y[v] 

   Vecx1<-c(x1j,x1k,x1v) 

   Vecx2<-c(x2j,x2k,x2v) 

   Vecy<-c(yj,yk,yv) 

   A<-cbind(Const,Vecx1,Vecx2) 

   Det<-round(det(A),4) 

   if(Det!=0){ 

    Beta<-solve(A,Vecy) 

    B0<-Beta[1] 

    B1<-Beta[2] 

    B2<-Beta[3] 

    LADEst<-LAD2(n,Yi,X1i,X2i,B0,B1,B2)  

    l<-l+1 

    VecLAD[l]<-c(LADEst) 

    VecB0[l]<-c(B0) 

    VecB1[l]<-c(B1) 

    VecB2[l]<-c(B2) 

    Vecj[l]<-c(j) 

    Veck[l]<-c(k) 

    Vecv[l]<-c(v) 

   } 

  }   

 } 
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} 

LADLoc<-sort.int(VecLAD,index.return=TRUE) 

PairLoc<-LADLoc$ix[1] 

FirstPoint<-Vecj[PairLoc] 

SecondPoint<-Veck[PairLoc] 

ThirdPoint<-Vecv[PairLoc] 

Constant<-VecB0[PairLoc] 

Beta1<-VecB1[PairLoc] 

Beta2<-VecB2[PairLoc] 

Label1<-"The first LAD data point is";Label2<-"The second data point 

is";Label3<-"The third data point is" 

Label4<-"The constant of LAD regression model is";Label5<-"The first parameter 

is" 

Label6<-"The second parameter is" 

Label1;FirstPoint;Label2;SecondPoint;Label3;ThirdPoint;Label4;Constant;Label5;Be

ta1;Label6;Beta2 
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